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Lattice Boltzmann study of spinodal decomposition in two dimensions
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A lattice Boltzmann model using the Shan-Chen prescription for a binary immiscible fluid is described, and
the macroscopic equations obeyed by the model are derived. The model is used to quantitatively examine
spinodal decomposition of a two-dimensional binary fluid. This model allows examination of the early-time
period corresponding to interface formation, and shows agreement with analytical solutions of the linearized
Cahn-Hilliard equation, despite the fact that the model contains no explicit free-energy functional. This regime
has not, to the knowledge of the authors, been previously observed using any lattice Boltzmann method. In
agreement with other models, a scaling law with the exponent 2/3 is observed for late-time domain growth.
Breakdown of scaling is also observed for certain sets of simulation parameters.
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I. SPINODAL DECOMPOSITION

The separation of two immiscible fluids due to spinod
decomposition is a process of significant intellectual and
dustrial importance. Much of the theory surrounding the p
cess has been summarized by Bray@1# and Furukawa@2#.

A two-component fluid may be described by a net flu
velocity U(r ) and the densitiesnA(r ) and nB(r ) of each
component, at each pointr in the fluid. In the incompressible
regime, it can be useful to work with the conserved ord
parameterf(r )5nA(r )2nB(r ), describing the degree o
separation of the fluids. The process of phase separation
be divided into several regimes, each dominated by a dif
ent physical process. For many of these regimes, it is thou
that thedynamical scaling hypothesisholds—that is to say,
snapshots of a system at two different times will have id
tical morphology when each snapshot is scaled by its sin
characteristic length scaleL(T), whose time dependence
of the formL(T);Ta.

If it is assumed that the only parameters determining
behavior of the system are the densityr, kinematic viscosity
n, and surface tensions, then only one length scaleL0
5rn2/s and one time scaleT05r2n3/s2 may be con-
structed. Lengths and timesL andT measured in simulation
may then be described in terms of the reduced variable,
5L/L0, andt5T/T0. If dynamical scaling holds for a rang
of phase-separating systems, then the evolution of redu
domain size, plotted against the reduced timet should col-
lapse onto the same curve for all such systems.

A. Interface formation

During the very early stages of spinodal decomposit
from a deep quench, the order parameter will be very sm
Small fluctuations in the order parameter will gradually b
come larger, as particles of a given component gradu
diffuse towards one another, and away from particles of
other component. The fluid velocity will be small, so hydr
dynamics may be neglected.

*Electronic address: j.chin@qmul.ac.uk
†Electronic address: p.v.coveney@qmul.ac.uk
1063-651X/2002/66~1!/016303~8!/$20.00 66 0163
l
-
-

r

an
r-
ht

-
le

e

ed

n
ll.
-
ly
e

If the dominant phase-separation mechanism is the di
sion of particles down the gradient of chemical potenti
then a treatment with the Cahn-Hilliard equation@3# is ap-
propriate. If it is assumed that there is a potential ene
V(f) associated with the order parameterf, then the evolu-
tion of the order parameter for particles of mobilityM and
diffusivity k is given by

]f

]t
52M¹2F2k¹2f1

]V

]fG . ~1!

Following the treatment given in, for example, Guntonet al.
@4#, at very early times the order parameter may be treate
a small perturbation around its initial value of zero. Taylo
expanding the derivative of potential energy to second or
then gives

]f

]t
5M¹2S 2k¹21

]2V

]f2U
f0

D f. ~2!

Taking the Fourier transform,

]

]t
f̃~k,t !52Mk2S 2kk21

]2V

]f2U
f0

D f̃~k,t !5v~k!f̃~k,t !.

~3!

Hence, the Fourier-transformed order parameter has the f
f̃(k,t)5f̃0(k)ev(k)t. The structural properties of isotropi
phase-separating systems are often described by the cir
or spherical average of the structure factor, defined as

S~k,t !5 K 1

V
U E ~f~r !2f̄ !eik•rU2L . ~4!

This description is particularly useful because it may
compared directly with x ray measurements. For phase s
ration in this regime, the structure factor takes the form

S~k,t !5S0~k!e2v(k)t. ~5!

From Eq.~3!, it can be seen thatv(k) is positive for wave
vectors smaller than a critical valuekc . For such wave vec-
©2002 The American Physical Society03-1
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tors, the structure factor retains the same shape, but g
exponentially in magnitude with time; the growth rate is
function v(k) of wavelength. If there is a large peak in th
structure factor, its position will stay the same while
grows, and there will be no change in the dominant len
scale of the phase-separating system.

Once domains containing a majority of one particu
component have formed, domain growth may proce
through the Lifshitz-Slyozov ripening mechanism, whe
droplets of the minority phase form and ripen through
evaporation-condensation mechanism, giving rise to at1/3

growth law @1#.
Evidence for Lifshitz-Slyozov growth has been seen

Langevin models without hydrodynamics@5,6#, dissipative
particle dynamics~DPD! @7#, Monte Carlo renormalization
group studies@8#, and lattice Boltzmann studies@9,10#.

B. Viscous hydrodynamic growth

Once sharp interfaces have formed and hydrodynam
has become important, one of several growth mechani
may come into play.

In the viscous hydrodynamic regime, the viscous term
the Navier-Stokes equation predominates over the ine
term n¹2U;1/r“p, for pressurep. Assuming that dynami-
cal scaling holds, and takingp;s/L, suggests thatL;T.
This linear growth law was predicted by Siggia@11#; how-
ever, San Miguelet al. @12# showed that Siggia’s growth
mechanism would only occur in three dimensions, and no
two. Instead, they proposed at1/2 growth law based around
interface diffusion.

For two-dimensional~2D! systems, early-timet1/2 growth
has been observed in molecular dynamics~MD! simulations
@13,14#, DPD @15,16#, lattice-gas automata~LGA! @17#, and
a lattice Boltzmann model@18#. Other lattice Boltzmann
models have produced at1/3 growth law @10,19#, which has
also been observed in models that did not conserve mom
tum @8,20#.

C. Inertial hydrodynamic growth

If the Reynolds number of the system becomes su
ciently high, the inertial term in the Navier-Stokes equati
dominates the viscous term; a brief dimensional analysis
above then suggests at2/3 growth law, as predicted by Fu
rukawa@2# for times much larger thanT0. Grant and Elder
@21# suggested that for very high Reynolds numbers, tur
lent remixing would slow the domain coarsening process
t1/2 law; however, but this has not yet been observed, an
has been pointed out@15# that their assumptions are deba
able.

A t2/3 late-time growth law in two dimensions has be
seen in several numerical simulations, such as Ginzb
Landau models@20#, DPD @7#, and lattice Boltzmann model
@19,18,22,23#.

The purpose of this paper is to make a quantitative an
sis of 2D spinodal decomposition using the Shan-Chen
tice Boltzmann model, comparing if, where appropriate, w
behavior reported from other models.
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II. WHY A LATTICE BOLTZMANN MODEL?

The lattice Boltzmann model provides a useful way
simulating hydrodynamics. It is very simple to implemen
and since most lattice Boltzmann equation~LBE! models
only require interactions between nearest-neighbor sites
the lattice, it scales well on massively parallel computers
runs substantially faster than MD and LGA methods, sinc
neither tracks every molecule in the system as MD does,
requires as much ensemble averaging as LGA. In additio
is easily modified to incorporate an arbitrary number of
teracting fluid components.

Lattice Boltzmann studies of spinodal decompositi
have already been done in two@19# and three@24# dimen-
sions, producing interactions between the components e
by forcing immiscibility in a manner similar to the Rothman
Keller method for LGA models@25,26#, or by positing a
macroscopic free-energy functional that must be minimiz
The latter approach has the advantage that macroscopic
rameters such as surface tension may be chosen and sup
directly to the model. However, such a ‘‘top-down’’ approa
gives little information about how the microscopic intera
tions in a system give rise to its macroscopic behavior, an
is not always clear that such a free-energy approach is v
in systems that are far from equilibrium.

The ‘‘bottom-up’’ Shan-Chen model described belo
takes a different approach by specifying an explicit inter
tion force between components, which drives the phase s
ration. Phase separation has been examined qualitatively@27#
using the Shan-Chen model, but until now no quantitat
studies have been made. The results of the studies prese
here suggest that phenomena very similar to those exam
with free-energy models, including the very early stage
interface formation, may be studied using the Shan-Chen
proach.

III. 2D LATTICE BOLTZMANN MODEL FOR IMMISCIBLE
FLUIDS

Lattice Boltzmann models describe the evolution of
single-particle distribution functionf i

s defined on a discrete
lattice of pointsx, where each point is connected to itsi th
nearest neighbor by a vectorci . f i

s(x,t) is proportional to the
number of particles of components at sitex at time t trav-
eling with velocity ci , so that the number densityns and
velocity us of components are given by

ns~x!5(
i

f i
s~x!, ~6!

nsus~x!5(
i

f i
s~x!ci . ~7!

Many lattice Boltzmann models use the ‘‘lattice Bhatnag
Gross-Krook~BGK!’’ ansatz, where, after a streaming ste
where particles move to adjacent sites, the distribution fu
tion relaxes to an equilibrium valueNi(n

s,U), chosen to be
some function of the macroscopic fluid velocityU that pro-
duces the correct hydrodynamic behavior:
3-2
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LATTICE BOLTZMANN STUDY OF SPINODAL . . . PHYSICAL REVIEW E 66, 016303 ~2002!
f i
s~x1ci ,t11!2 f i

s~x,t !52
1

ts
@ f i

s~x,t !2Ni~ns,U!#.

~8!

Shan and Chen@28# introduced a modification to this mode
to allow the simulation of fluids with many interacting com
ponents. The equilibrium value of the distribution functio
for a given component is now set to be a function not of
total fluid velocityU at a site, but of a velocityvs, where

vs5u81
ts

rs
Fs, ~9!

u85S (
s

rs

ts
usD Y S (

s

rs

ts D . ~10!

Here,rs5msns is the mass density of components, andFs

is the force acting on that component. The form of the int
action force was given in terms of an arbitrary functi
cs(x)5c@ns(x)# of the density of each component at ea
site:

Fs52cs~x!(
s̄

gss̄(
i

cs̄~x1ci !ci . ~11!

The interaction strength between componentss and s̄ is
controlled by the coupling constantgss̄ .

Many lattice Boltzmann models, including the origin
Shan-Chen model, have been performed on lattices on w
the lattice tensorsTa1 . . . an

(n) 5( icia1
•••cian

are isotropic up

to fourth order, so that isotropic hydrodynamics can be
covered. The only regular lattice in 2D with the appropria
properties is the hexagonal ‘‘FHP’’ lattice@29,30#, although a
hydrodynamic lattice-gas model has recently been c
structed on a simpler irregular lattice@31#. Qian et al. @32#
pointed out that the correct hydrodynamic behavior can
recovered from certain anisotropic regular lattices, provid
that a modified equilibrium distribution is used, incorpora
ing a weighting factorTi for each lattice vectorci :

Ni~n,U!5nTiF11
ciaUa

cs
2

1
UaUb

2cs
2 S ciacib

cs
2

2dabD G .

~12!

The weighting factors are chosen such that the ten
Ta1 . . . an

(n) 5( iTicia1
•••cian

are isotropic to fourth order, tha

is to say,

Ta
(1)50, ~13!

Tab
(2)5cs

2dab , ~14!

Tabg
(3) 50, ~15!

Tabgd
(4) 5cs

4~dabdgd1daddbg1dagdbd!. ~16!
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It can be shown@33# that the constantcs
2 is the squared spee

of sound of the model. Some straightforward algebra sho
that n5( iNi(n,U) andU5( iNi(n,U)ci .

In order to use the Shan-Chen interaction system for m
els on such anisotropic lattices, a weighting factor must
included in the force term, modifying Eq.~11! to give

Fs52cs~x!(
s̄

gss̄(
i

Tic
s̄~x1ci !ci . ~17!

This may be written as a Taylor expansion:

cs̄~x1ci !.cs̄~x!1cib]bcs̄~x!1 1
2 cibcig]b]gcs̄~x!1•••.

~18!

Substituting this expansion into Eq.~17! and using the
isotropy property of the lattice tensors to simplify, gives,
third order,

F5(
s

Fs.2cs
2
“S (

ss̄

csgss̄cs̄D . ~19!

cs
2 is the speed of sound, which may be derived from

lattice properties.
In the Shan-Chen model, the momentum at a site

changed during both the advection step and the collis
step—momentum is not conserved locally. Because of t
the macroscopic fluid velocity must include contributio
from this momentum flux. It can be shown@34,35# that de-
fining the macroscopic velocity as the velocity at the temp
ral midpoint between collision and advection, or requiri
that it go to zero at equilibrium, produces the same expr
sion:

rUa5(
s

ms(
i

f i
scia1

1

2 (
s

Fa
s . ~20!

Similarly, the momentum flux tensor becomes

Pab5(
s

ms(
i

f i
sciacib

1
1

2 (
ss̄

gss̄Tic
s~x!cs̄~x1ci !ciacib . ~21!

It should be noted that the Shan-Chen scheme conserve
mass of each component, and the rate of change of t
momentum is proportional to the force:

ms(
i

V i
s50, ~22!

(
s

ms(
i

V i
scia5(

s
Fa

s . ~23!

A full derivation of a more general form of the macro
scopic equations of the Shan-Chen model is presented in
Appendix.
3-3
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IV. LONG-TERM STABILITY

Kendonet al.observed instabilities with a free-energy la
tice Boltzmann model@36#, and suggested that any simul
tion using the algorithm would eventually become unstab
The Shan-Chen model used here has certainly shown in
bilities, for example, for systems with very high surface te
sions, which lead to large particle velocities and numeri
overflow. Unconditional instability has not been observe
systems that became unstable usually did so within the
few thousand time steps. As a further check on stability
phase-separation simulation was performed on a 2563256
lattice for 23106 time steps without showing any signs
instability. Between time step 1.953106 and time step 2
3106, the value in lattice units of the order parameter at a
lattice site differed at most by 4.8310212.

V. SURFACE TENSION

In order to conduct investigations of spinodal decompo
tion, the surface tensions must be determined. A convenien
method for doing this is to evaluate the integral of the d
ference between the components of the pressure tenso@as
defined in Eq.~21!# perpendicular and parallel to the inte
face:

s5E
2`

`

@P'2P i#dz5E
2`

`

@Pxx2Pyy#dx. ~24!

All simulations described here used relaxation times
t r5tb51.0, and a mean density of 1.0. For each value of
coupling constantg5grb5gbr @Eq. ~11!# used in a phase
separation simulation, the corresponding surface tension
determined by initializing a simulation on a 128332 grid
~initially split into two 64332 regions containing one singl
component!, and allowing the interface to relax. The surfa
tension was then calculated once fluctuations had died do
usually after approximately 40 000 time steps.

VI. SPINODAL DECOMPOSITION STUDY

Spinodal decomposition simulations were performed o
2563256 lattice. The simulations were initialized to conta
a number density of 0.51d red particles and 0.52d blue
particles at each site, whered is randomly chosen from a
uniform distribution in the range20.025<d<0.025 at each
lattice site, to provide a small initial perturbation in the ord
parameter. Since there are no thermal fluctuations in this
tice Boltzmann algorithm, the system would sit in a me
stable state forever if both the order parameter and den
were exactly uniform across the system.

A conventional measurement of the typical domain s
R(t) in simulations of phase separation is the inverse fi
moment of the circularly averaged structure factor@Eq. ~4!#:

R~ t !52pS (
k

S~k! D Y S (
k

kS~k! D . ~25!
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In regimes where only one length scale exists,R(t)
should scale with the same exponent as any other measu
domain size.

A. Interface formation

A simulation was performed with the coupling consta
g51.08, giving a surface tensions50.005, as seen in Fig. 1
For the period approximately between time steps 1000
5000, no change in the typical domain sizeR(t) was ob-
served, as can be seen in Fig. 2. However, when the struc
factor S(k) is plotted as a function of a wave vector, th
exponential growth predicted by a Cahn-Hilliard treatme
can be clearly seen, as in Fig. 3.

The wavelength-dependent growth ratev(k) was deter-
mined from the results by fitting a straight line through
graph of logS(k,t) againstt for each wave vectork. The form
of v(k) obtained is close to the quartic functional form su
gested in Eq.~3!, as can be seen in Fig. 4.

In Fig. 5, it can be seen that during this stage of ph
separation, the sizes and positions of the domains rem
roughly the same, while the interfaces between each dom
gradually sharpen as separation proceeds. Once sharp
faces have formed, the domains then begin to coar

FIG. 1. Surface tension in lattice units vs coupling constantg for
r51.0 andt51.0.

FIG. 2. Characteristic lengthR(t) vs simulation time step, both
in lattice units, forg51.08,r51.0, t51.0.
3-4
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LATTICE BOLTZMANN STUDY OF SPINODAL . . . PHYSICAL REVIEW E 66, 016303 ~2002!
through other mechanisms; the exponential growth in str
ture factor stops and the structure factor peak moves tow
longer wavelengths.

In addition to the previously detailed analytical treatme
early-time exponential growth of the structure factor h
been simulated in DPD studies@37#. Our results show that i
is now also possible to examine the regime with latt
Boltzmann models. It is perhaps worth noting that the res
of a free-energy Cahn-Hilliard model are reproduced here
a model that does not employ an explicit free-energy fu
tional in its implementation of interactions between spec

B. Long-time growth exponent

Simulations were performed for parameters correspo
ing to reduced times 0.01<T/T0<1000, withTmax510 000.
The characteristic domain sizeR(t) was calculated from the
inverse first moment of the structure factor. The reduced
main sizeR(t)/R0 for any simulation was observed to co
lapse onto the same curve, as can be seen in Fig. 6. Du

FIG. 3. The structure factorS(k) plotted against wave vectork
for time step 1000~lowest curve!, every 500 time steps up to tim
step 10 500~highest curve!. Since the vertical axis is logarithmic
the even spacing of the curves demonstrates the exponential gr
present at early stages of phase separation.

FIG. 4. Growth ratev(k) against wave vectork compared with
the analytical Cahn-Hilliard form.
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the early-time period, no viscous hydrodynamic growth h
been observed, since the Cahn-Hilliard mechanism app
to dominate. For large timesT@T0, the t2/3 inertial growth
law was observed. Note that since the power-law curve is
the form R5(T2Ti)

n rather thanTn (Ti corresponding to
the time at which interfaces have formed! the t2/3 regime is
not quite a straight line, as it would be wereTi50.

If dynamical scaling holds in thet2/3 regime, then the
rescaled structure factorF(x)5S(k,t)/R(t)2 of any simula-
tion at any point in time should always have the same fo
when plotted againstx5kR(t). This can be seen in Fig. 7
According to Porod’s law@8#, a system with a sufficiently
large amount of interface should produce a structure facto
the form F(x)}x23 for sufficiently largex in two dimen-
sions; this curve is plotted for comparison. However, for ve
large wave vectors, Porod’s law is not expected to be obe
since the corresponding length scale is similar to that of
interface width.

VII. BREAKDOWN OF SCALING

The dynamical scaling hypothesis does not always h
during phase separation, as has been observed both ex

th

FIG. 5. A one-dimensional cross section of the lattice, show
the order parameter in lattice units vs position in lattice units,
several different time steps during the interface formation sta
Note that the domain width remains constant, while the depth
creases.

FIG. 6. Reduced domain size plotted against reduced time.
3-5
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JONATHAN CHIN AND PETER V. COVENEY PHYSICAL REVIEW E66, 016303 ~2002!
mentally by Tanaka@38#, and in free-energy lattice Boltz
mann simulations by Wagner and Yeomans@9#. They all ob-
served a regime where domains form due to hydrodyna
effects, but too quickly for the order parameter to obtain
equilibrium value, leading to a second phase separation
side the initially established domains.

The same effect has been observed with this model,
example, with the parameter sett51.8765, r51.0, g
53.266. The system quickly separates into domains, w
smaller circular domains appearing at longer times, lead
to a variety of length scales, as shown in Fig. 8. There is
clear scaling behavior when this effect occurs.

VIII. CONCLUSIONS

A 2D lattice Boltzmann model has been described. Wh
used to examine spinodal decomposition, the model sho
agreement with the Cahn-Hilliard theory during interfa
formation at very early times. Dynamical scaling was se
for the late-time inertial stage of phase separation, with
typical domain size scaling as the time raised to the powe
2/3. However, under certain circumstances, breakdown
dynamical scaling was also seen, as has been observed
experimentally and in another LBE model. Viscous-regim
dynamical scaling was not observed.

For certain parameter sets, the model was found to rem
numerically stable for many time steps, in contrast to a fr
energy model, which apparently does not display such
havior @36#. In our model, instabilities only appear to set

FIG. 7. Rescaled structure factor in the scaling regime, with
dotted line representing anx23 curve for comparison with Porod’s
law.

FIG. 8. Order parameter during breakdown of scaling on
2563256 lattice. Note the many different droplet sizes at late tim
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for extreme values of the simulation parameters.
In the Appendix, we report a derivation via a Chapma

Enskog procedure of the general macroscopic equat
obeyed by the model when implemented on any of the
tices described by Qianet al. @32#. Since the model allows
for many lattice types and an arbitrary number of interact
fluid components, it should be useful for treating other co
plex fluids, such as those involving surfactants@39#.
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APPENDIX: MACROSCOPIC EQUATIONS
FROM THE SHAN-CHEN MODEL

The treatment below works for arbitrary numbers of im
miscible or forced components, and is valid forany of the
lattices defined by Qianet al. @32#. Previous Chapman
Enskog procedures for the Shan-Chen model seem to h
been limited to specific lattices such as FHP, and produ
macroscopic equations containing lattice-specific terms s
as the number of nearest neighbors in single-velocity lattic
However, these may be absorbed into the speed of soundcs

2 ,
which in turn can be derived from the properties of the l
tice.

1. Moments of the equilibrium distribution

By multiplying Ni
s by the appropriate number of lattic

vectorsci , summing overi, and substituting the relation
~13–16!, the following moments of the equilibrium distribu
tion can be found:

ms(
i

Ni
s~u!5rs, ~A1!

ms(
i

Ni
s~u!cia5rsua , ~A2!

ms(
i

Ni
s~u!ciacib5rs~cs

2dab1uaub!, ~A3!

ms(
i

Ni
s~u!ciacibcig5rscs

2~uadbg1ubdag1ugdab!.

~A4!

2. Power series expansion

The collision operator may be written as a Taylor expa
sion in time and space:

V i
s5 f i

s~r1ci ,t11!2 f i
s~r ,t !5~cia]a1] t! f i

s

1 1
2 ~cia]a1] t!~cib]b1] t! f i

s1•••.

e

a
.

3-6
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LATTICE BOLTZMANN STUDY OF SPINODAL . . . PHYSICAL REVIEW E 66, 016303 ~2002!
The distribution function is written as a power series e
pansion in a parametere, used to keep terms of the sam
order together. This parameter will be dropped from the
mainder of this treatment:

f i
s5 f i

s(0)1e f i
s(1)1e2f i

s(2)1•••. ~A5!

The time derivative is also written as a series expans
with each term corresponding to a different physical tim
scale. Spatial derivatives are treated as first order:

] t5]1t1]2t1•••. ~A6!

Substituting these expansions into the Taylor series for
collision operator gives

V i
s5~cia]a1]1t! f i

s(0)1~cib]b1]1t! f i
s(1)

1@]2t1
1
2 cia]a~cib]b1]1t!

1 1
2 ~cia]a1]1t!# f i

s1•••.

Hence,V i
s5V i

s(1)1V i
s(2)1•••, where

V i
s(1)5~cia]a1]1t! f i

s(0), ~A7!

V i
s(2)5~cib]b1]1t! f i

s(1)1@]2t1
1
2 cia]a~cib]b1]1t!

1 1
2 ~cia]a1]1t!# f i

s(0). ~A8!

In order to produce a set of macroscopic equations,
leading-order distribution function is set to be the equil
rium distribution about the macroscopic fluid velocity d
fined in Eq.~20!, i.e.,

f i
s(0)5Ni~ns,U!. ~A9!

SubstitutingU into the moments~A1,A2! of the equilibrium
distribution function shows that the density and macrosco
momentum may be found from the first-order equilibriu
distribution function:

ms(
i

f i
s(0)5rs, ~A10!

(
s

ms(
i

f i
s(0)cia5rUa . ~A11!

However, the full distribution function~A5! must still pro-
duce the single-component densityms( i f i

s and the kinetic
momentumms( i f i

sci . This requirement leads to restriction
on the higher-order terms in the expansion:

ms(
i

f i
s(n)50 for n.0, ~A12!

(
s

ms(
i

f i
s(1)cia52

1

2 (
s

Fa
s , ~A13!

(
s

ms(
i

f i
s(n)cia50 for n.1. ~A14!
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For notational convenience, define thenth-order momen-
tum flux tensors:

Pa1•••an

s(n) 5ms(
i

f i
s(n)cia1

•••cian
,

Pa1•••an

s 5Ps
a1•••an

(0) ,

Pa1•••an
5(

s
Pa1•••an

s .

Substituting the first-order expansion~A7! into the con-
servation relations~22,23! gives

]aPa
s1]1tr

s50, ~A15!

]bPab1]1tPa5(
s

Fa
s . ~A16!

Equation ~A15! describes the conservation of mass for
single component. Equation~A16! is an inviscid Euler equa-
tion for the fluid mixture, with a scalar, velocity-independe
pressure proportional to the density:

]acs
2r1]bruaub1]1trua5(

s
Fa

s . ~A17!

Requiring continuity to second order gives

]aPa
s(1)1]2tr

s1 1
2 ]a]bPab

s 1]1t]aPa
s1 1

2 ]1t
2 rs50.

~A18!

Equation ~A15! can be differentiated to give]1t]aPa
s

52]1t
2 rs; substituting into~A18! gives

]2tr
s52]aPa

s(1)2 1
2 ]a]bPab

s 1 1
2 ]1t

2 rs. ~A19!

Summing overs, then substituting Eq.~A13! to get rid of
the term inPa

s(1), gives

]2tr5 1
2 ]a(

s
Fa

s2 1
2 ]a]bPab1 1

2 ]1t
2 r. ~A20!

The terms on the right-hand side now cancel out upon s
stitution of Eqs.~A15! and ~A16!, giving

]2tr50. ~A21!

To second order, conservation of momentum gives

]bPab
s (1)1]1tPa

s(1)1]2tPa
s1 1

2 ]b]gPabg
s 1]1t]bPab

s

1 1
2 ]1t

2 Pa
s50. ~A22!

The first-order terms may be simplified by substituting t
first-order terms in the BGK operator:

f i
s(1)52ts~cig]g1]1t! f i

s(0). ~A23!

This gives
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Pa
s(1)52ts]bPab

s 2ts]1tPa
s ~A24!

Pab
s (1)5ts@]gPabg

s 1]1tPab
s #. ~A25!

Substituting into the momentum equation~A22! gives

]2tPa
s5~ts2 1

2 !]b]gPabg
s 1~ts2 1

2 !]1t
2 Pa

s

1~2ts21!]1t]bPab
s . ~A26!

Following, for example, Wolfram@29#, the last two terms
are dropped since they become negligible for a sufficien
small Mach number. This is not an entirely satisfacto
move—Qian and Orszag@40# pointed out that these two
terms give rise to a term cubic in the velocity, whose ma
nitude relative to the other terms varies roughly as the squ
of the Mach number. Suggestions@41# have been made to
correct this effect.

Recombining the above equation with the first-order m
mentum equation~A16!, summing over components, and u
ing ] tPa5]1tPa1]2tPa gives a Navier-Stokes equatio
for an incompressible low Mach number flow:
-

ev

lat

ys

es

d

01630
y

-
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-

] tPa1]bPab5(
s

xs~ts2 1
2 !]b]gPabg1(

s
Fa

s .

~A27!

Here, the mass fraction of components is written asxs. This
can be expanded to give

] tUa1Ub]bUa1
1

r F]a~cs
2r!2(

s
Fa

sG5n]b]bUa .

~A28!

The kinematic viscosityn is given by

n5cs
2(

s
xs~ts2 1

2 !. ~A29!

The force term for immiscible fluids is usually treated b
substituting the continuum approximation into Eq.~19!.

It is perhaps worth noting that the force acting betwe
components is~to second order in the expansion! propor-
tional to the concentration gradient because of the lat
isotropy. It is possible that expansion beyond second or
may provide a method for treating surfactant interactions
well @39#.
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